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Slater functions for the atoms Y-Cd have been formulated by
the distance between subspaces method. Basis sets proposed here
are single- and double-zeta size and have been constructed using
numerical Hartree—Fock functions as reference. A comparative
study with Clementi and Roetti basis sets of the same size has
been carried out, obtaining a uniform criterion for the behavior of
the series of atoms Y—Cd when the number of d electrons is varied.
The new basis sets provide a better simulation of some atomic
properties and appear to be appropriate for molecular and solid
state calculations. © 1995 Academic Press, Inc.

INTRODUCTION

Most quantum-mechanical calculations on atoms and
molecules are carried out within the framework of an
expansion method. The one-electron orbitals are ex-
pressed in terms of a basis set and the expansion coeffi-
cients are chosen by minimization of the total energy.
Calculations of molecules containing elements beyond the
second-row transition metal atoms represent an enormous
computational effort when the size of the basis set used
is increased and thus few calculations have been reported.
A compromise must be struck between the optimization
of the quality of variables and the computational diffi-
culty required.

While a great amount of effort has been devoted to the
construction of Slater-type orbital (§TO) basis sets (1-10),
consistency in the choice of basis sets used in ab initio
studies of transition metal compounds is still lacking.
However, the progress experienced in the development of
new techniques for computing the multicenter molecular
integrals of STOs (4, 11) has renewed interest in the design
of STO basis sets to perform molecular calculations. In
fact, the generation of STO basis sets of adequate size
and quality represents an appropriate tool for molecular
calculations. The need for sets of STOs to be used as basis
orbitals for the metal atoms is also increasing, because
calculations performed on transition metal complexes are
becoming more and more common.

In practice, such large basis sets can only be vsed for

relatively small systems. This represents a severe limita-
tion in the area of transition metal chemistry. However,
experience has shown that accurate information concern-
ing structural and chemical problems may also be obtained
from medium-size basis sets. This occurs when the va-
lence shells (and especially the nd shell) are granted
enough flexibility to mimic the electronic relaxation in-
volved in chemical bonding.

In regards to the second row transition elements,
Clementi and Roetti (2) have carried out a very extensive
study of STO basis sets using the minimization of the
total atomic energy, whereby one can find small-size-
type basis sets (single-zeta), intermediate-size-type basis
sets {double-zeta), and very accurate large-size-type
basis sets (limit Hartree—Fock). In addition, Richardson
ef al. (12) have reported STO basis sets (double zeta
in the 3d and 4d orbitals) for atoms and ions of the
second-transition clements in the ground states of the
configurations [Kr] 44". In particular, double-zeta and
larger size basis sets yielded resulis almost maiching
the corresponding HF solutions (2, 13). Recently, high-
quality STO basis sets have become available (6-8).
However, in problems with a large number of electrons
or in processes requiring repetitive calculations, smaller
basis sets are needed.

An interesting alternative approach is to prepare practi-
cal basis sets (expanded over a small basis set) that accu-
rately reproduce the desired characteristics of a given set
of high-quality basis sets {(expanded over a large basis
set), This idea has been fruitfully applied by vs (14-16).
We are interested in practical basis sets that reproduce
in a satisfactory manner the characteristics of the high-
quality basis sets presently available, Generation of small
basis sets that optimally reproduce some desired charac-
teristics of a larger, high-quality basis sets have been
considered in the literature (12, 17). The use of small basis
sets is extended as starting points in density of functional
theory (18) and pseudopotential methods (19). Different
criteria of simulation have been discussed and applied,
all of them directed toward making molecular calcula-
tions feasible.
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BACKGROUND THEORY

In a previous paper, we extended the initial study of
light atoms to the first-row transition metals (16), optimiz-
ing the distance between subspaces for the ground states
of atoms Sc—Zn by using limit Hartree—Fock (LHF) as
reference functions. In the present work we have obtained
functions of single-zeta (SZ) and double-zeta (DZ) size
from numerical Hartree—Fock (NHF) (13) as reference
for the 10 atoms of the second series of transition with
electronic structure [Kr] 44"5s2.

In the application of the method of the distance between
subspaces to multielectronic wavefunctions (14), we de-
fine the corresponding equations for the distance between
two orbitals ; and for the distance between two multielec-

tronic wavefunctions d, as

and

d. = (2 — zplﬂ)llz

N
dD= 2(1 - I:,Il,pi)v

(11

[2]

where N is the number of electrons and p, are the eigenval-
ues of the matricial equation,

P=C"M"pMC, i3]
TABLE 1
Exponents for Optimized SZ Basis Sets of Y-Cd Atoms

Y D) Zr OF) Nb (‘F) Mo (D) Tc (°5)

1s 37.78781  38.76204  39.72876  40.70769  41.68048
2s 15.04830  15.44820 15.84290  16.24646  16.64558
3s 7.92290 8.20135 8.47998 8.75846 9.03808
45 3.63789 3.84241 4.03783 4.22627 4.40877
55 1.29347 1.35982 1.41718 1.46772 1.51148
2p 17.27238 1776225 18.25190 1871614  19.22542
Ip 7.70681 8.00222 8.29695 8.59366 8.88585
4p 3.13021 3.33007 3.52120 3.69786 3.88500
3d 7.51808 7.93810 8.35678 8.74908 9.12509
44 1.89999 2.18984 2.42280 2.63191 2.83399
Ru {°D) Rh (*F) Pd (°F) Ag (2D) Cd ('S)

1s 42.65297  43.62523 4459740 4556973  46.54161
2s 17.04454  17.44315 17.84208  18.24077  18.63929
3s 9,31737 9.59736 987769  10.15844  10.44017
45 4.59317 4,77248 4,94870 5.12219 5.29351
Ss 1.56261 1.60737 1.64883 1.68761 1.72263
2p 19.71999 2021773 2071981  21.21492  21.66843
3p 9.17818 9.46783 9.76886 1006065  10.35423
4p 4.06595 424772 4.41963 4.58993 4.72638
ad 9.49155 9.84985 10.20217  10.54987  10.89383
4d 2.99733 3.16710 3.33559 3.50252 3.67046

TABLE 2
Exponents for Optimized DZ Basis Sets of Y-Cd Atoms

Y (3D) Zr OF) Nb (*F) Mo (°D) Tc (55)

1s 40.08016 41.10547 42.07157 43.04876 43.93758
1s 28.87248 29.65697 30.13625 30.50621 31.11497
2s 16.70737 16.79628 16.98062 18.11895 18.92889
2s 16.53732 17.06938 17.40227 17.95674 18.72720
is 10.83169 11.31312 11.76450 12.22594 12.67137
35 7.48592 7.79236 8.05652 8.46948 8.74502
45 4,32781 4.49358 4.69700 4.89257 5.13156
4s 2.94683 3.07377 3.20935 3.37352 3.50249
Ss 1.64145 1.75288 1.82798 1.89626 1.94773
55 0.96934 1.02514 1.06053 1.09265 1.11037
2p 27.41114 28.19304 28.50994 29.26357 29.74614
2p 16.49394 16.99401 17.43996 17.92527 18.25042
3p 8.90835 9.10516 9.44099 9.76358 10.00751
3p 6.41543 6.64728 6.98834 7.29208 7.55658
4p 3.85978 4.08209 4.31096 4.55111 4.65765
4p 2.40392 2.55171 2.69895 2.84866 291119
3d 11.58%09 12.36544 12.80483 13.14460 13.89653
3d 6.20156 6.62701 6.98602 7.28004 7.67860
4d 2.85597 3.10710 3.34902 3.57195 3.86303
4d 1.35077 1.52862 1.68551 1.82895 1.98914

Ru (°D)  Rh {*F) Pd (°F)  Ag (D)  Cd('S)

1s 45.10781 46.06824 47.16369 48.02604 49.23722
1s 31.51667 32.06164 32.62741 33.75929 34.71929
25 19.94432 20.74419 21.06030 21.96653 22.16630
2s 19.16555 19.72461 20.51693 21.07024 21.89491
3s 13.47783 14.12507 14.83470 15.36794 15.83970
3s 9.15216 9.23329 9.82030 10.14772 10.41585
45 5.30583 5.47209 5.68933 5.86895 6.09660
4s 3.62125 3.73775 3.87374 3.98866 4.14092
5s 2.04345 2.08005 2.16529 2.22883 2.27982
35 1.15256 1.17439 1.20647 1.23332 1.26487
2p 30.18881 30.81327 31.18938 31.64007 32.09252
2p 18.83944 19.17740 19.75887 20.21485 20.62987
3p 10.29451 10.51002 10.85084 11.07347 11.30686
3p 7.84644 8.01400 8.43406 8.68348 8.92969
4p 4.98229 5.18625 5.41436 5.60608 5.81585
4p 3.11799 3.24315 3.38380 3.50197 3.62911
3d 14.30278 14.37533 15.23683 15.65030 16.06598
3d 8.01817 8.23314 8.68626 9.00420 9.31716
4d 4.01415 4.19845 4.41147 4.61807 4.84893
44 2.05057 2.13953 2.25294 2.35609 2.46524

where C is the matrix of coefficients for the trial basis
set, M is the mixed overlap matrix between trial and
reference basis sets and p is the density matrix of the
reference basis set. The total distance d, is the optimized
variables of the method.

The coefficient matrix C of the trial basis set is unknown
and it is modified in the optimization process and we can
write Eq. (3) as

P= sl!2M+pMsflI2, [4]

where 8 is the overlap matrix of the trial basis set.
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TABLE 3
Orbital (d,,) and Total (dp) Distances for Optimized SZ and
DZ Basis Sets of Y-Cd Atoms

SZ e DZ

opt
Ao dp dy dp

Y (*D) 0.11131223  0.72076998 0.00804795  0.04598338
Zr OF) 0.10432787 0.66589626 0.00729237 0.04631095
Nb (*F) 0.09863740  0.64400855 0.00666204  0.04720189
Mo D) 0.09407802  0.63248086 0.00589977  0.04773511
Tc (¢5) 0.09005901 0.62111896 0.00527535  0.04842307
Ru (°D) 0.08672089  0.63419085 0.00543452  0.05352492
Rh (*F} 0.08360353  0.63916715 0.00485444  0.05407395
Pd 3F) 0.08073588  0.64242513 0.00521228 0.05%04121
Ag (D) 0.07808428  0.64477659 0.00494960 0.06237170
Cd (s 0.07560571 0.64519529 0.00445672  0.06371982

When NHF functions are used as the reference basis
set, the radial part P, (r) of the wave function is obtained
for different values of r. We have calculated the radial
part of Y-Cd atoms with the MCHF72 program (13).

Using the NHF functions Eq. (4} is transformed into

P= S_"'ZM"'MS‘HZ. [5]

The solution of this equation requires the calculation
of the elements of mixed-overlap matrix M between pu-
merical orbitals and trial orbitals STOs and the overlap
matrix § of this last basis set. The calculation of elements
of matrix M has been carried out with a cubic spline
interpolation and integration (20).

RESULTS AND DISCUSSION

Exponents summarized in Tables 1 and 2 correspond
to basis sets of size SZ and DZ for Y-Cd atoms. All
calculations have been carried out for the lower states
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associated with the configuration [Kr] s2d”. This selection
of states has been done because only these configurations
are defined for NHF by Froese Fischer (13); nonetheless,
other configurations for these atoms can been found. If
we compare these optimized exponents with Clementi
and Roetti’s (2), then our functions generally prove to be
more contracted. The variation is greater for 1s and 4d
functions than all other functions. Optimized exponents
for 15 and 4d functions show greater variation than Clem-
enti and Roetti’s exponents.

In this series the optimized orbital exponents of basis
sets exhibit a linear dependence with the atomic number,
as has been found previously for the first row of transition
metals (16). This correlation is good in the inner orbitals,
but some deviations from the linear shape appear in the
DZ basis sets (see Table 2). This regular behavior of
atomic orbitals with nuclear charge is also shown in the
Richardson et al. basis sets (12).

The distance is a function of the exponents and not of
the coefficients. In Table 3, 44 orbital and total distances
are given for atoms Y-Cd. Wavefunctions of double-zeta
size present total distances lower than those of single-
zeta functions for all atoms. The most important contribu-
tion to the change of the total distance d}, is produced by
the 4d orbital distance.

In Table 4, we show that Clementi and Roetti’s basis
sets give lower energies than those of the corresponding
optimized SZ and DZ. Calculations of total energies with
these new basis sets give an error of less than 0.1 and
0.01% for SZ and DZ sizes respectively, defining the error
with respect to Clementi and Roetti’s basis sets.

On the other hand, Y and Zr atoms give positive orbital
energies with SZ Clementi and Roetti’s basis sets that
only have one 44 function. In Table 5, we present 4d
orbital energies for these atoms obtained with Clementi
and Roetti’s and our basis sets. Optimized basis sets with
respect to the distance give 44 orbital energies lower than
those of the corresponding basis set of the same size SZ
and DZ given by Clementi and Roetti. For some atoms the

TABLE 4
Total Energies (au) for SZ, SZ,,,, DZ, DZ,,, and LHF Basis Sets of Y-Cd Atoms
SZ 5Zp DZ DZ LHF
Y ({D) —3324.7806 —3322.9283 —3331.6538 —3331.6251 —3331.6712
Zr C°F) —3531.3181 -3529.6774 —3538.9632 —3538.9360 —-3538.9821
Nb (‘F) —3745.4826 —3744.0864 -3753.5211 —3753.4978 —3753.5394
Mo (*D) —3967.0398 —3965.6744 —3975.4131 -3975.3967 —3975.4280
Tc (55) —4196.0536 —4194.7198 —4204.7590 —4204.7153 —4204.7753
Ru (*D) —4432. 3604 —4430.9896 —444].4569 —4441.4282 —4441.4746
Rh (*F) —4676.2637 ~-4674.8389 —4685.7699 —4685.7244 --4685.7892
Pd (°F) —4927.8059 —4926.3060 —4937.7504 —4937.7174 —4937.7709
Ag (*D) —5187.0705 —5185.4706 —5197.4836 —5197.4014 —5197.5029
Cd ('$) —5454.1908 —5452.3973 —5465.0971 —5465,0035 —5465.0722
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TABLE 5
4d Orbital Energies (au) for SZ, SZ_,, DZ, DZ,,,, and LHF Basis Sets of Y-Cd Atoms
SZ SZ g DZ DZ,, LHF
Y (*D) +0.742747 —0.178694 —0.246362 —0.247663 —0.249866
Zr (°F) +0.007466 —0.26262} ~0.333411 —0.334725 —0.336541
Nb (4F) —0.176494 —0.325522 —0.401706 —0.404255 —0.405599
Mo (°D) —0.252331 —0.384934 —0.465155 —0.467974 —0.469921
Te (55) ~0.319138 —0.451146 —0.539626 —{.542879 —0.543716
Ru D) —{0.313875 —0.458452 —(.562487 —0.567339 —0.568211
Rh (*F) —0.327662 —0.4848%6 —0.604028 —0.608769 —0.611133
Pd (°F) —0.341351 —0.517533 ~0.649053 —0.653695 -0.657171
Ag (3D} —0.360996 —0.553600 —0.696432 —0.700936 —-0.706374
cd('s) —0.386210 —0.611129 —0.752369 —0.757802 —-0.763570

differences between the orbital energies are remarkably
large. For example, the Y atom gives a positive orbital
energy with SZ; however with 8Z, the sign is correct
and the value only differs 0.06 au with respect to the DZ
basis set. In Table 5, we can observe that d orbital energies
increase along the series, and the lowest energy is ob-
tained for Cd.

Minimal basis sets of STO functions are not efficient
for transition metals as they need more functions to de-
scribe the valence atomic orbitals. STO basis sets ob-
tained by minimization of atomic energy give poor results
for 3d and 4d orbital energies of transition metals of first
and second series respectively, particularly for Cu and
Zn, and Y and Zr, where positive values are obtained.
We note that the 44 orbital energies calculated with our
new SZ basis sets are lower than those recently obtained
by Koga and Thakkar (10). For the 44 orbital of the Y
atom they report a positive energy (0.70769), compared
with our value in {(—0.178694) Table 5.

Some atomic properties for 44 orbitals for analyzing
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FIG. 1. Condon-Shortley parameters for 44 orbitals of Y-Cd atoms:

U, SZ; +, $Zgg; O, DZ; A, DZgy.

these new basis sets have been considered: Condon-
Shortley parameters, average values of (#") and {(p"),
n=-2,—-1,1,and 2. First, we analyze Condon-Shortley
parameters in Fig. 1 for Y to Cd atoms. We have repre-
sented values of [F(4d, 4d) — F| ye(4d, 4d)] x 100 versus
atoms, where F(4d, 4d) and F| (44, 4d) are the corre-
sponding Condon-Shortley parameters of the determined
basis set and LHF basis set for the 44 orbital. Better
results are obtained for optimized basis sets (SZ,,,) than
for Clementi and Roetti’s sets, except for Y, Zr, and Nb
where the SZ basis set gives higher values. However the
DZ,, always gives a smaller error than DZ, and for some
atoms the difference is remarkable.

Using the wavefunction expanded in the SZ, SZ s DZ,
and DZ,, basis set, average values of powers of (r")
(n=-2,-1,1,2,3, 49and {p™) (n = =2, -1, 1, 2,
3, 4) have been calculated using the recently published
formulas (21). In the present work only some of these
powers are presented. In Fig. 2, the relative error of {r')
property is plotted. The relative errors have been defined
using LHF as the reference basis set. The results demon-
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FIG. 2. Relative error {r'} for 44 orbitals of Y-Cd atoms: O, SZ;
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strate a lineal dependence with the atomic nuclear charge,
except for Y, Zr, Nb, and Mo atoms when the SZ basis
set is employed.

Relative error of {p~') is shown in Fig. 3. For positive
powers of r and negative powers of p the optimized basis
sets give lower error than Clementi and Roetti’s basis sets;
similar results are obtained for the first row of transition
metals (16). For negative powers of r and positive powers
of p the two types of DZ basis sets give similar errors.
For all average values of powers of r and p, SZ basis sets
of Y, Zr, and Nb atoms give an error higher than that for
the rest of the elements of the series. This behavior agrees
with orbital energies of Table 5. Thus Y and Zr atoms
give the maximum error for powers of r and p and present
positive orbital energies 44.

SZ and DZ basis sets give better results for {(p?) and
{r"" since, in both cases, the energy is the optimization
criterion, and thus they are indirectly optimized. However
SZ basis sets for this series do not have the same degree
of accuracy for all atoms; the higher errors are given by
the first atoms of the series and the error decreases as
the nuclear charge increases.

In order to prove those new exponents in molecular
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integrals we expand every STO function as a inear combi-
nation of three Gaussian functions. These expansions of
STOs have been obtained with the criterion previously
published by us (15, 16). We have chosen three Gaussian
functions in order to compare them with STO-3G basis
sets, because they are the most simple basis sets and are
used in calculations with transition metals (22), and also
because STO-3G basis sets and those obtained with the
distance between subspaces are not optimized with re-
spect to the atomic encrgy.

We have constructed Gaussian expansions minimal ba-
sis sets for second-row transition metals using the distance
between subspaces as we have previously described (15).
Exponents and coefficients are optimized for the minimal
distance between the subspace generated by our opti-
mized STO and the subspace generated by the three
Gaussians for the lowest state of the [Kr] 5s% 44" configu-
ration.

In order to compare our results we have constructed a
linear combination of Gaussian functions similar to how
Pietro and Hehre (23) prepared their basis sets. The 1s,
25, 35, 4s, and Ss, the 2p, 3p, and 4p, and the 3d and 4d
STO functions are expanded inthe 15, 2p, and 3d Gaussian
functions, respectively. In molecular calculations the
Slater functions of a given principal quantum number are
expanded in the same set of Gaussian functions, giving
different coefficients for different / numbers. In this series
of atoms, the set of exponents used has been &,,, £, =
ch% c}s = €3p’ Laas €45 = €4p! €4d! and gSs' The g?-d and
{4; exponents have not been considered equal to £, and
{4,. respectively.

We have calculated the molecular energies of four mole-
cules that contain Zr, Nb, and Ag atoms using our expan-
sions for the heavy element and the STO-3G for the lighter
element. The molecular energies and the optimized bond
lengths are given in Table 6 which also includes the experi-
mental bond lengths. Energies and bond lengths, for ZrCl,
and NbF, molecules, obtained with the STQ-3G basis
set are lower than those obtained with our functions.
However, the values of axial and radial bond lengths for
NbF; obtained with our Gaussians fit better with the ex-

TABLE 6
Energies (au) and Geometries (A) for Compounds with Second-Row Transition Metal
This work Other?
Experimental®
Molecule Point group Energy Bond length Energy Bond length bond length
ZrCl, T, —5323.6077 2.261 —5324.2197 2.316 2.32
NbF; 329 ~4208.2656 1.761/1.753 —4208.9564 1.804/1.788 1.88/1.88
AgF C., —5248.0231 1.735 —5247.9023 1.633 1.983
AgCl L ~5604.6789 2.181 —5604.4933 2.083 2.281

@ Ref. (23).
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perimental ones. In the case of AgF and AgCl molecules,
the energies obtained with our expansions are lower than
those obtained with STO-3G while the bond lengths are
more similar to the experimental values.

We have developed new STO functions of small (8Z)
and middle (DZ) size, optimized with a mathematical cri-
terion for the second row of transition metals. These basis
sets improve some atomic properties (average values of
r" and p”, and orbital energies of 44 orbitals) with respect
to the Clementi and Roetti’s STOs. In molecular calcula-
tions, the proposed basis sets produce values as accurate
as those obtained with basis sets of the same size used
in standard molecular programs.
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